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Introduction

The shapes and elevations of barrier islands may change dramatically over a short

period of time during a storm. Coastal scientists and engineers, however, are currently

unable to measure these changes occurring over an entire barrier island at once. This

three-year project, which is funded by NASA and jointly conducted by the Bureau of

Economic Geology and the Center for Space Research at The University of Texas at

Austin, is designed to overcome this problem by developing the use of interferometry

from airbome synthetic aperture radar (AIRSAR) to measure coastal topography and to

detect storm-induced changes in topography. Surrogate measures of topography observed

in multiband, fully polarimetric AIRSAR (This type of data are now referred to as

POLSAR data.) are also being investigated.

Digital elevation models (DEM) of Galveston Island and Bolivar Peninsula, Texas

(Fig. 1) obtained with Topographic SAR (TOPSAR) are compared with measurements by

Global Positioning System (GPS) ground surveys and electronic total station surveys. In

addition to topographic mapping, this project is evaluating the use of POLSAR to detect

old features such as storm scarps, storm channels, former tidal inlets, and beach ridges

that have been obscured by vegetation, erosion, deposition, and artificial filling. We have

also expanded the work from the original proposal to include the mapping of coastal

wetland vegetation and depositional environments. Methods developed during this

project will provide coastal geologists with an unprecedented tool for monitoring and

understanding barrier island systems. This understanding will improve overall coastal

management policies and will help reduce the effects of natural and man-induced coastal

hazards. This report summarizes our accomplishments during the second year of the

study. Also included is a discussion of our planned activities for year 3 and a revised

budget.
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Figure 1. Study areas for 1995 and 1996, AIRSAR missions. (A) Locations of study areas

on Galveston Island and Bolivar Peninsula. Also shown are GPS base stations operated

during the flights. In 1995, the NASA DC-8 aircraft took off from Ellington Airforce

Base for each flight. In 1996, the aircraft came from Dallas. Buoy Station No. 42035 is

operated continuously by the National Data Buoy Center and provides wave and

meteorological data. (]3) Detail of study areas.
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1996 AIRSAR Missions

We completed our 1996 AIRSAR missions in June. On June 24, we imaged along

the coast from Freeport, Texas northeast to Bolivar Roads (the entrance to Galveston

Bay). The Gulf of Mexico shoreline is in the center of the swath, and the coverage

includes all of Follets and Galveston Islands. On June 25, we imaged from Bolivar Roads

northeast to High Island, Texas again with the Gulf shoreline in the center of the swath

and covering all of Bolivar Peninsula. Also on the 25 _ , we imaged along a line oriented

perpendicular to the Gulf shoreline from Crystal Beach on Bolivar Peninsula north to

Liberty, Texas north of Galveston Bay.

During both days, we operated a geodetic-quality GPS base station on the ground

and one on the DC-8 aircraft (Fig. 1). Just before the flights, we placed and surveyed 16

radar reflectors (1 m sheet metal corner reflectors) along the flight lines to aid with image

registration. Within 8 days of the mission, we completed detailed GPS surveys of a 2-km

stretch of beach on Galveston Island and additional GPS surveys along 6 transects over

the study area. These ground surveys are required to check the TOPSAR topographic

solutions.

Also within a few days of the flights, we conducted detailed vegetation and

sediment surveys at a test site on Bolivar Peninsula. The test site includes uplands, high

and low marshes, barren high and low flats, and open water. The ground data are required

for interpreting the environmental mapping capability of POLSAR data.

For the two areas imaged along the shoreline, we collected 20 MHz, C-, L-, and P-

band POLSAR, 40 MHz C- and L-band POLSAR, and front (from the Gulf of Mexico

side) and back looks of 40 MHz C- and L-band TOPSAR. For the shore-perpendicular

area, we obtained 20 MHz, C-, L-, and P-band POLSAR and 40 MHz C- and L-band

POLSAR. We have requested most of the POLSAR data and the front look of the

TOPSAR data to be processed by NASA's Jet Propulsion Laboratory (JPL) and

transmitted to us.

In addition to the radar data, we obtained calibrated Airborne Multispectral Scanner

(CAMS) data and simultaneous color infrared photography of Galveston Island and

Bolivar Peninsula on July 3, 1996. NASA's Stennis Space Flight Center acquired these
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data.TheCAMS datahavea4-m groundresolutionwhich is the same as the 40 MHz

SAR data.

Data

Status of the 1996 Data

(1) We have received about 90 percent of the requested 20 and 40 MHz POLSAR data.

The data cover all of Bolivar Peninsula and Galveston Island and some of Follets

Island southwest of Galveston Island. We also obtained several frames from the

Trinity River Delta area in northern Galveston Bay. Some of our data have been

affected by a calibration problem in JPL's AIRSAR processor. The C-band,

horizontal/vertical dipole channel was not calibrated properly. JPL is reprocessing

these data.

(2) We have received two TOPSAR frames covering 20 km of the southwest end of

Bolivar Peninsula.

(3) We have all the kinematic and static GPS data and other topographic survey data

taken on the ground during the missions and are acquiring the GPS data taken on the

aircraft from JPL.

(4) We have vegetation, and sediment data for the test site including numerous

photographs taken on the ground.

(5) We have all the CAMS data and vertical aerial photography.

(6) We have acquired National Wetlands Inventory digital data and entered them into our

Geographic Information System (GIS).

Status of the 1995 Data

(1) In April, 1995, we acquired 20 MHz POLSAR and 40 MHz TOPSAR data for

Galveston and Follets Islands and Bolivar Peninsula. We have obtained all of the 20-

MHz, POLSAR data for one front look direction and several frames for the back look

direction.

(2) We obtained two frames of TOPSAR data covering about 20 km of the southwest end

of Galveston Island.
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(3) We haveall the kinematic GPS data taken on the ground during the missions and are

acquiring the data taken on the aircraft from NASA.

(4) We have acquired and reduced all ground survey data taken by us during the missions,

and we have transmitted the X,Y,Z positions of the radar reflectors for the Galveston

area to JPL. In addition to the topographic data we collected, we have obtained

topographic transect data of Bolivar Peninsula taken by a commercial surveyor in

1992.

(5) We have acquired digital data of roads and hydrography and have entered the data

into our GIS.

(6) We acquired one high-quality vertical aerial photograph of Bolivar Peninsula taken at

1:40,000 scale by the U.S. Geological Survey.

Data Analysis

We have reduced and compiled all topographic survey data acquired by us on the

ground during the missions. We have used these data to georeference radar images and to

make a preliminary evaluation of the TOPSAR DEM on the southwest end of Bolivar

Peninsula. We conducted preliminary work on techniques to filter noise, mosaic, and

georeference TOPSAR DEM's from low-relief (<10 m) coastal areas. We finished

development of a radar backscatter simulation model and have incorporated into it

vegetation and sediment observations from the Bolivar Peninsula test site. This model

provides information on the relative importance of microwave scattering from the surface

and vegetation in various coastal wetland environments. We have begun to use the

POLSAR and CAMS data to classify coastal wetland environments on Bolivar Peninsula.

We are continuing development of our own software for repeat-pass interferometry.

Preliminary Results

We prepared abstracts and proceedings papers describing our work on this project

over the last year. Two manuscripts have been submitted for publication in the 1997

International Geoscience and Remote Sensing Symposium Proceedings. One describes

our work with evaluating, mosaicing, georeferencing, and improving TOPSAR DEM's
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from low-relief regions(seeAppendixA). Theotherpaperaddressesmultisensor

classificationof coastalwetlandsusingPOLSARandCAMS data(seeAppendix B). We

alsopresenteda posterattheFourthInternationalConferenceonRemoteSensingfor

MarineandCoastalEnvironments(seeAppendixC).This posterwon an"honorable

mention"award.Clint SlattoncompletedaMasterof Sciencein EngineeringThesis(see

AppendixD). His thesisinvolvedthedevelopmentandtestingof a modelthatsimulates

radarbackscatterfromcoastalwetlandenvironments.Thefollowing is a summaryof our

results.

ThestudyareasonGalvestonIslandandBolivarPeninsulahavea relief of lessthan

4 m andarecomposedof distinct subenvironmentsandmorphologicalfeatures.These

subenvironmentsandfeaturesincludemultiplebeachridgesandswales,vegetatedbarrier

flats, foredunes,high-andlow-salt-watermarshes,intertidal/wind-tidalfiats,tidal creeks,

tidal deltas,andexposedandshelteredbeaches.Alsopresentarerelict washover

fan/flood-tidaldeltacomplexes.Salinity,vegetation,sediment/soiltype,andsurface

roughnessvarysignificantlybetweentheseareas.Beachridgeshavedry, shellysand

sediment,andinterveningswalesbetweenridgesarewetterwith somehavingstanding

water.Barrierfiats arealsomadeof shellysandandsupportlandusessuchasagriculture,

ranching,andurban/recreationaldevelopment.Sedimentsformingsalt-watermarshesand

intertidal/wind-tidalfiatscontainmoremud,arewetter,andpotentiallyhaveahigher

salinity thanotherenvironments.Sedimentsonactiveocean-sidebeachesarefine sand

with a largealongshorevariationin gravel-sizedshellcontent.Foredunesbehindthe

beachesconsistof dry well-sortedsand.

During thefirst yearof thisprojectwedemonstratedthatmultibandPOLSARdata

areableto separatevarioussubenvinronmentsandmorphologicalfeaturesvery well. In

general,we foundthatC-bandis well suitedfor detailedvegetationdiscrimination,

whereasL- andP-bandarebetterfor separatingtheimageryinto largerscale

environmentalunitsbasedonbothvegetationandsubstratecharacteristics.Furthermore,

L-bandappearsto bestdelineatebeachridgeandswalemorphology.L- andP-banddata

appearto indicateextensionsof tidal creekscuttingacrosstheislandsthatmaynotbe
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visible onaerialphotography.L- andP-bandcanalsodelineateformerbreachescaused

by stormsanddredging.

During thepastyear,webeganto applystatisticalclassificationtechniquesto the4-

m resolution(40MHz) C- andL-bandPOLSARdataandCAMSdata.Thegoalof this

work is to developlandcovermapswith classificationsthataregeologicallyand

biologically significant.Datawereclassifiedon asingle-sensorandmultisensorbasis.

Themostreliablesingle-sensorclassificationwasobtainedusingCAMS opticaldata.

POLSARdataweresecondin classificationaccuracyandCAMS thermaldatalast.When

multisensorintegrationwasperformedusingthesingle-sensorclassifiers,classification

accuracyincreased.This indicatesthatPOLSARdatacontainusefulinformationin

delineatingcoastalwetlands(seeAppendixB for moredetails).

Evaluationandprocessingof TOPSARDEM's obtainedduring thelastyearhas

providedsomepromisingresults.Becausethestudyareahaslow relief, noiseor

systematicerrorwitha magnitudeassmallas0.5 m is apparentandsignificantlylimits

theDEM's use.It wasreadilyobviousthatthe 1995TOPSARDEM of thesouthwestend

of GalvestonIslandwasnotuseful.Systematicandapparentlyrandomerrorson theorder

of therelief of the islandwerepresent.The 1995dataweretakenin non-pingpongmode

(transmitoff thetopantennaonly) whereasthe 1996datawereobtainedin pingpong

mode(alternatingthetransmitantennabetweenthetopandbottomantennas).Pingpong

modeeffectivelydoublestheantennabaselinewhich improvestheroot meansquare

heighterrorby afactorof two(Yunling Lou (JPL),e-mailcommunication,June30,

1997).

The 1996DEMof thesouthwestendof Bolivar Peninsulashowsmuch

improvementoverthe 1995datafrom GalvestonIsland.Figure2 is oneframeof the

DEM obtainedwith C-band,40MHz TOPSARwith radarilluminationfrom theGulf of

Mexico side(our front look).Theazimuthdirection(flight pathdirection)is roughly

parallelto thepeninsula(horizontaldirection in figure 2). Theradarincidenceanglewas

45 degreesalongtheaxisof thepeninsula.Maximum relief of thisregionis about6 m.

The shadingintervalin figure2is 9 cm andthepixelsare10mby 10m.
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Figure 2. TOPSAR DEM from the southwest end of Bolivar Peninsula. Ground pixel

size is 10 m by 10 m.
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Topographically subtle features such as the beachface, foredune, beach ridges and

swales, and an old railroad grade are apparent (figure 2). There are, however, vertical

bands especially pronounced in the near range (top of figure 2). The DEM, as received

from JPL, had more prominent banding than what is shown here. We processed the data

to remove as much of the banding over land as possible. This systematic error is caused

by aircraft motion and, before our processing, had an amplitude that varied in range (top

to bottom direction in figure 2) from 1 to 5 m. Our processing involved extracting a strip

of data from over the Gulf of Mexico and parallel to the azimuth direction. This strip was

160 pixels wide in the range direction. The pixels were averaged across range to yield a

curve that was added to the rest of the DEM up and down range. This correction curve

was subsequently adjusted by a constant factor to obtain the best looking DEM over the

land areas. This technique significantly improved the DEM, but it only worked because

the Gulf of Mexico is a relatively flat surface and extends across the entire azimuth

direction of the frame. Also important to the success of this approach is that the banding

is oriented parallel to the range direction. We have also attempted harmonic filtering

techniques, but so far this has not satisfactorily improved the DEM.

Figure 3 is a transect taken from the DEM in figure 2. This transect crosses the zone

where waves are breaking, the beach, dune, beach ridges, tidal creek, and the intracoastal

waterway (ICW). Areas where there is a smooth surface, such as in the bays and ICW,

radar backscatter is low. In these areas, therefore, the signal to noise ratio for the

TOPSAR is low and the heights noisy. The transect shows the ocean height at the beach

face, the height of the tidal creek, the heights of the ICW shorelines, and the height of the

bay shoreline all to be within 20 cm, which is expected. This result indicates the internal

consistency of the DEM. At this point in our analysis, we think TOPSAR DEM's are

useful for aiding the classification of subenvironments in low-relief coastal areas and may

be useful in measuring large-scale erosion caused by hurricanes.

Plans for Year 3

(1) At this time, we are not certain of the timing of our third AIRSAR mission. We are,

however, moving forward with plans for a laser altimeter mission.
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(2) We will continueto work with JPLin evaluatingTOPSARDEM's usingdatafrom

Bolivar Peninsula.We will evaluatetheaccuracyandresolutionof theTOPSAR

DEM with groundsurveysandlaseraltimeterdataif available.

(3) We will continueto usephysicallybasedscatterermodelsto analyzetheSAR

interactionswith wetlandterrainandvegetation.Wewill continueto assessSAR's

sensitivityto parametersthatareimportantfor theecologicalstudyof wetland

ecosystems,suchassoil moisture,soil salinity, soil type,andvegetationcover.

(4) We will continueworkonapplyingPOLSARto classifybarrierislandenvironments

andgeomorphicfeaturesandto producemapsof selectareas.We will alsocontinue

workon incorporatingPOLSARinto multisensorclassificationschemes.A

significantstepwill betheadditionof TOPSARDEM's to theclassificationprocess.
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Removal of Residual Errors From SAR-Derived Digital Elevation Models For Improved

Topographic Mapping of Low-Relief Areas
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Abstract -- Interferometric synthetic aperture radar data can
be used to precisely map topography, but low-relief areas are

problematic because errors in the data can be large compared
to the topographic variations. The NASAJJPL TOPSAR
system acquired data over a low-relief test site on the Texas
coast in 1996. Due to unusually high turbulence during the

acquisition and the mild topography, residual height errors
were visible in the Digital Elevation Model (DEM). The
characteristics of the error signal are described and a method
is outlined for removing the residual error and mosaicking the
affected TOPSAR frames.

INTRODUCTION

Land surfaces with mild topography, such as river
floodplains and coastal zones, are typically very prone to
flooding due to precipitation and storm-surge events.
Topography-based flood models have been developed that
predict the extent and severity of flooding in such areas under
a variety of circumstances, and Digital Elevation Models
(DEMs) are needed as inputs to these topography-based
models [1]. Because errors in the DEMs propagate directly
into the predictions of flood extent, it is important to
maximize the accuracy and precision of the DEMs that are
used in these models.

Standardized and georeferenced DEMs are produced by
the United States Geological Survey (USGS) and are widely
available for most of the United States. These DEMs are

often sufficiently precise for areas with significant
topography because any height errors will typically be small
relative to the actual surface height variations. The
specification for the Level 1 USGS DEM is <15 m vertical

root mean square (rms) error. Figure 1 shows a Level 1 DEM
for the test site. The horizontal data spacing is 30 m and the
vertical data spacing is 1 ft [2]. However, greater precision is
needed when mapping low-relief areas because these errors
in the DEMs may be of similar magnitude to the surface
height variations, and so have a great effect on the accuracy
of flood models that use the DEMs. DEMs used for flood

modeling must also have fine horizontal resolution so that
small hydrologically-important features, such as stream beds,

This work was supported by the Texas Regional Change
Program through the Texas Space Grant Consortium and the
Johnson Space Center, a National Aeronautics and Space
Administration grant under the Topography and Surface
Change Program (Grant NAG5-2954), and the Texas
Advanced Technology Program.

are accurately mapped. Improved resolution can potentially
be achieved by generating DEMs using radar data.

In June 1996, the NASAJJPL AIRSAR system collected
interferometric synthetic aperture radar (INSAR) data over
low-relief regions on the coast of Texas, USA. To collect

INSAR data, the AIRSAR system operates in its topographic
(TOPSAR) mode. Figure 2 shows two mosaicked TOPSAR

frames over Mission Bay, Texas. The ground-range-
projected TOPSAR DEMs have data spacings of 10 m
horizontally and 0.1 m vertically. The TOPSAR data are

within sensor specifications in terms of rms height error [3].
However, small systematic height errors are still visible in the
original DEMs because the area has such low relief. This
paper describes some of the errors observed in the data and
outlines the procedures used to minimize those errors and
mosaic the DEMs.

INSAR BACKGROUND

DEMs, like those produced by the USGS, have
traditionally been derived from stereo processing of aerial
photography or optical spaceborae data. In recent years,
DEMs have also been derived from SAR data using
interferometric processing. The data for INSAR DEMs may
be acquired day or night and in most weather conditions, but
the primary advantage of INSAR methods is that the
elevation of each pixel is determined independently. In
stereo-optical DEMs, individual pixels are binned into
discrete elevations to create noise-free closed-contour

topographic maps. The primary disadvantages of INSAR
DEMs are their sensitivity to sensor motion and their noise
characteristics.

DEMs can be generated from INSAR data by combining
two complex (phase and magnitude) SAR images acquired
from similar vantage points [4]. Once the two images are co-
registered, a differential phase can be calculated for each
pixel. Using a known position of at least one pixel and
unwrapping the modulo 2n phase, a map of absolute phase
differences is generated. Geometric relationships can then be
used to create a height map (DEM) relative to the radar
position. The height map can be referenced to a geocentric
coordinate system by collecting Global Positioning System
(GPS) data onboaa:l the sensor platform.

Most of the work to date in generating INSAR DEMs has
focused on data collected from spaceborne systems using
multiple observations (repeat-pass). In particular, the
European Remote Sensing satellites (ERS-1 and -2) have
been used extensively for this purpose [5]. However, any



changes that occur in surface or atmospheric conditions in the
imaged area between observations will introduce errors into
the subsequent DEM. The shortest time interval between
observations suitable for INSAR processing is about one day
for the tandem ERS system [6]. Significant changes in the
backscattering properties of the surface or refractive
properties of the atmosphere due to precipitation or humidity
changes can occur on this time scale, thus reducing the
number of suitable image pairs [7].

INSAR systems with more than one antenna, such as
TOPSAR, can make dual observations simultaneously so that
decorrelation of the scene through time is not a factor. This
is especially important for vegetated, humid regions, such as
the Texas coast, which can decorrelate rapidly. TOPSAR
data are also available at higher spatial resolution than
currently-available spaceborne data, (e.g. 25 m for ERS-1).
This improves the mapping of small-scale features. The
primary disadvantage of single-pass airborne systems is that
the platform motion is perturbed more frequently and in a
less deterministic manner than spaceborne platforms.
Standard processing of TOPSAR data does include motion
compensation, but if the motion is severe or high-frequency,
residual errors on the order of + 1.5 m may be observed in the
DEMs. If the actual topographic variations are on the order
of <_I0 times this magnitude, the error signal may be visible
in the DEMs.

TEST SITE

TOPSAR fiightlines were acquired along coastal stream
beds in the San Antonio-Nueces watershed on the Texas
coast. This watershed is located on a low-lying coastal plain.
Flightlines were oriented approximately normal to the
shoreline to observe the topography along the streams that
carry most of the water runoff to the bays. The topographic
variation in the 20 km nearest to the shore is only about 13 m.
The TOPSAR data analyzed for this paper are from a
flightline over Mission Bay. Hurricane models implemented
for similar areas along the Texas coast predict storm surge
penetrations of up to 15 km inland for a category 1 hurricane
(74-95 mph winds), with flooding distributions that are
highly dependent upon small topographic variations such as
streambeds[I].

CHARACTERIZING THE DATA
1st order errors in the TOPSAR DEMs are manifest as

planar tilting in range. This tilting is the result of
uncompensated path delays in the radar system. When
mapped into heights, those time delays can produce linear
slopes in the DEMs. The DEMs can also exhibit higher order
errors due to aircraft motion. Errors due to aircraft motion
were observed in one of the TOPSAR frames over the

Mission Bay test site.
Two adjacent l0 km x 10 km TOPSAR frames were

acquired from a single flightline. A periodic signal
superimposed on the topography was apparent in one of the

frames. This "ripple" was primarily a function of azimuth,
but also exhibited a weak inverse dependence on range. The
approximate peak-to-peak amplitude was 3 m, and there were
8 complete periods in the frame. A printout of the aircraft
motion file was obtained and the ripple signal appeared to be
exactly correlated with the roll motion of the aircraft, which
exhibited an 8 Hz frequency and peak-to-peak amplitude of
1°. Neither yaw nor pitch motion exhibited any significant
correlation with the ripple signal.

TOPSAR DEMs have demonstrated relative rms height
errors of 1-2 m in relatively flat areas [3]. The DEMs
acquired over this test site exhibited rms error levels well
within those reported levels. The residual errors due to
aircraft motion were visible because nearby storms produced
excessive turbulence during the acquisition and the total
topographic variation in the test site is only about 10 times
the magnitude of the residual signal.

ERROR REMOVAL AND EVALUATION

To produce a mosaicked DEM strip from individual
TOPSAR frames, the relative errors must be corrected. After
an internally consistent DEM strip is produced, it can be
georeferenced using GPS data collected on the ground. The
following procedures were followed.

1.0 Correct relative errors
1.1 filter out the motion signal
1.2 image-to-image registration

1.2.1 1st order correction of elevations
1.2.2 standard 2-dimensional registration

1.3 smooth noise over low-backscatter targets
2.0 Georeference the DEM strip

2.1 image-to-GPS registration
2.1.1 1st order correction of elevations

2.1.2 standard 2-dimensional registration

It is necessary to correct the relative errors before
georeferencing so that overlapping portions of adjacent
DEMs will only differ to a 1st order. A stop-band Infinite
Impulse Response (fiR) filter was used to remove the ripple
signal. The filter removed the 8 Hz ripple while preserving
small-scale topographic features.

Elevations of features in the overlap between the two
DEMs were used to add the best planar correction (in a least
squares sense) to the slave DEM to obtain agreement with the
master DEM's elevations to a 1st order. Those same control
points were then used to do a 2-dimensional image-to-image
registration to mosaic the two DEMs. JPL is currently
developing the capability to output continuous strips of
TOPSAR data, which will eliminate the need for mosaicking
frames on a single flightline. Some open water areas in the
far range of the DEMs exhibited very low signal to noise
ratios (SNR), which were manifest as regions with very high-
frequency, large-magnitude noise. These areas were assigned
a constant elevation equal to elevation of the surrounding
bank.



Georeferencing the DEMs was accomplished via 3-
dimensional registration to GPS tie points after the DEMs
were made internally consistent and mosaicked. The DEMs
are georeferenced during the operational processing at JPL by
giving the latitude/longitude of the scene center, but more

accurate in situ georeferencing is needed for the DEMs in
low-relief areas.

Static GPS points were collected for georeferencing, but
more static GPS points will be collected to validate these
results. Kinematic GPS transects have also been collected

along several roads in the imagery, but the solutions have not
yet been analyzed. Figure 3 shows transects extracted from
the co-registered TOPSAR and USGS DEMs. The transects
show that the superior resolution of TOPSAR allows it to
capture topographic variations that are not resolved in the
USGS DEM. The TOPSAR data also exhibit greater
variability due to noise and non-surface features such as
trees.

CONCLUSIONS

The higher-order errors observed in these data do not
appear to be significant in most TOPSAR DEMs. The errors
were visible in these data because of the extreme low-relief

of the region and the proximity of storms during the
acquisition.

Future work will include improvements to the filtering of
the motion signals and validation of the results with more
GPS surveys. However, these preliminary results do indicate
that systematic errors can be minimized and precise DEMs
can be generated for low-relief areas using TOPSAR data.

[71 Kenyi, L. W. and Hannes Raggam, "Atmospheric Induced
Errors In lnterferometric DEM Generation", Proceedings
oflGARSS°96, pg. 353-355, 1996.

FIGURES

Fig. !: USGS DEM over Mission Bay, Texas, USA
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Abstract - Near concurrent airborne data were acquired over the

wetlands of the Bolivar Peninsula on the Texas coast by the

NASAJJPL AIRSAR (June 28, 1996) and NASAJStennis

Space Center Calibrated Airborne Multispectral Scanner

(CAMS) (July 3, 1996), both at 4m spatial resolution.

Several approaches which utilize information from both

sensors are investigated for classifying the landcover in these
data sets. Differences in statistical characteristics of the data

necessitate individual parametric models for observations from
each sensor, so data are initially classified separately, then a

final classification is obtained by combining results from the

statistical models using different multisensor integration

techniques. These integrated results are compared to single-
sensor classification results, as well as to a multisensor

classification based on artificial neural networks.

INTRODUCTION

The primary objective of classification of remotely sensed

data is often to map landcover. Because different information

is provided by various sensors, it can be advantageous to

jointly utilize the information of the multisensor data in the

classification process. In order to optimally exploit this

potentially expanded information set in the classification

framework, issues of sensor characteristics, differences in time

of acquisition, and target/sensor dependent information
content must be addressed.

Over the past several years, a significant amount of
research has focused on multisource and/or multisensor

classification for remote sensing applications. In [1] and [2],

the authors classify multisource data consisting of digital

imagery (Landsat MSS) and ancillary information (elevation,

slope, and aspect data). Since these data cannot be represented

by a single multivariate statistical model, the authors utilize
consensus theoretic methods to combine the results of single-

source statistical classifiers. In [3], the authors classify

multisensor data (optical and SAR) using structured classifiers
based on artificial neural networks, thus avoiding the need for

modeling the statistical distribution of the data and treating

each source or sensor separately.
Based on these issues, there were three objectives of this

study. The first was to classify the landcover present in a

wetland environment using remotely sensed data from several

This work was supported in part by the NASA Topography

and Surface Change Program (Grant NAG5-2954) and by the
NASA National Space Grant Consortium (Grant NGT40003).

sensors. Part of this process involved assessing the accuracy

of single-sensor classification, as well as determining the
advantages and potential problems associated with the use of

data from each sensor. By performing multisensor integration

of single-sensor classifier outputs, it could be determined

whether an improved classification was achieved, as well as

whether sensor integration enabled the detection of "hard"

classes, i.e. those classes which had lower probabilities of

correct classification for a given sensor. The final objective

was to determine, based on the data and single-sensor

classifier architecture adopted, how to best integrate the

multisensor data for classification of the study area.

The following sections contain descriptions of the test site,

the multisensor data acquired for the project, and the

methodology used to combine the information from these data

sets for the purpose of multisensor classification, as well as

preliminary results from analysis of the imagery.

STUDY SITE

Bolivar Peninsula is part of the low relief barrier islands of

the Texas coast located at the mouth of Galveston Bay. The

test site chosen for this study consists of a salt marsh located
at a washover fan on southern Bolivar Peninsula.

For classification purposes, this salt marsh study area is

characterized in terms of sub-environments defined by wetland

maps [4]. The various landcover types present in these

environments include low proximal marsh, high proximal

marsh, high distal marsh, and spoil/barren flats, as well as

areas consisting of water and trees. The low proximal marsh

corresponds to tidal flats comprised of spartina alterniflora

which experience frequent flooding. High proximal marsh is
defined as more continuos areas of spartina alterniflora and

salicornia virginica and are less frequendy flooded. High

distal marsh is comprised of spartina patens, salicornia

virginica, juncus roemerianus and lies adjacent to barren sand

flats. This area is flooded less frequently than proximal
marshes.

MULTISENSOR DATA DESCRIPTION

Two near concurrent airborne data sets were acquired over
the study site for the purpose of mapping wetland vegetation.

Both 20 MHz and 40 MHz AIRSAR data were acquired by

NASA/JPL on June 28, 1996 with a ground resolution of

approximately 8m and 4m respectively. Additionally,

Calibrated Airborne Multispectral Scanner (CAMS) was

flown by NASA/Stennis Space Center on July 3, 1996 with



approximately 4m spatial resolution. The CAMS data and
the 40 MHz AIRSAR data were selected for multisensor

classification due to their common coverage and comparable

spatial resolution. The multisensor classification system

analyzed data from three sensors: optical, thermal, and radar.

The "optical sensor" consisted of the six Landsat bands of the
CAMS instrument (Blue-NIR) plus a vegetation index, the
thermal sensor recorded the ninth band of the CAMS data, and

the NASA AIRSAR system acquired two frequency bands

(C,L) of fully polarimetric radar data (six channels total).

CLASSIFICATION METHODOLOGY

An ensemble based approach was adopted for classification of
the test site data. Data from each sensor were classified

separately, then single-sensor classifier outputs were

combined at the sensor integration stage.

Pre-Processing

During the pre-processing phase, radiometric and geometric

corrections were applied to the data sets. The CAMS Optical
data were corrected for bi-directional reflectance The CAMS

Thermal data were empirically corrected for radiometric

curvature present as a function of scan angle. The AIRSAR

data was passed through a 5x5 enhanced Lee filter to reduce

the effects of speckle in the imagery. Geometrically, the

AIRSAR data was slant-to-ground range corrected. To enable
multisensor classification, the three sensor data sets were co-

registered. Finally, each sensor band was normalized to zero

mean and standard deviation one for input to the classifiers.

Single-Sensor Classifier
For each sensor, the modular classifier architecture employs

an expert classifier trained for each output class. The

modularized class-specific expert classifiers are chosen to
increase the rate of correct classification since the sensor

classifier is not trained to solve the whole problem, just to

identify a particular class from all the remainder [5].

A separate radial basis function (RBF) network, based on a
mixture of Gaussians distribution for each sensor's class, is

used to obtain an estimate of the posterior probability for
each class

M

e(C,lx): X el)
j=l

where ¢i(x) are the local basis functions, w_i are the weights
of the network, and M is the number of basis functions [6].
These class distributions are modeled as local kernel

functions, in this case as mixtures of Gaussians. Based on

this framework, each class-specific RBF network was wained

to provide estimates of the posteriors using Moody-Darken

three-phase learning.

Sensor Integration

Sensor integration techniques are investigated as ensemble

approaches to combining classifiers with the goal to

incorporate information from each sensor and thereby increase

the performance over that achieved by single-sensor classifiers

[5]. Since the classifiers utilized for this study provide

estimates of the posterior probabilities for each class,
information can be combined via either the sum rule or the

product rule [1,7]. The sum rule, or weighted average, is

based on a weighted sum of the posterior probabilities of a

class for each sensor, whereas the product rule is based on a

weighted product of the posterior probabilities of a class for

each sensor. The weights can either be chosen to be equal for

each sensor, in which case just a simple average of the

posteriors is performed, or they can be chosen to represent,
for instance, the reliability of a given sensor [1]. A further

extension would be to weight the posteriors by the sensor's

reliability for a given class, not just its overall reliability.
The final technique employed for sensor integration utilizes

an artificial neural network, here an RBF network, trained on

the outputs of the single-sensor classifiers.

Multisensor Classifier

For comparison to ensemble based sensor integration

techniques, a multisensor classifier was tested to determine if
information was lost through the single-sensor classification

process. Since the data from each sensor were modeled using

a mixture of Gaussians model, a classifier using an expert

RBF network for each class was again used to classify the

multisensor data jointly from a single input vector.

RESULTS

Single-sensor classifiers based on RBF networks m:!

multisensor integrated classifiers based on ensemble

approaches to combining classifiers were used for the

classification of the CAMS Optical, CAMS Thermal, and
AIRSAR data sets. These results are shown in Table 1.

Single-Sensor Classification

Each single-sensor classifier was trained, validated, and

tested on separate data sets consisting of 267 ground truth

points collected from each of the six classes: water (1), low

proximal marsh (2), high proximal marsh (3), high distal

marsh (4), spoil/barren fiats (5), and trees (6).

The CAMS Optical data and AIRSAR data were both

trained using expert RBFs with a total of 50 basis functions
for each, while the CAMS Thermal data were trained using

expert RBFs with a total of 40 basis functions for each.

Overall, CAMS Optical performed the best of three

sensors, with the only difficulty coming in misclassifying

8% of the low proximal marsh as water. Given the amount

of water in the low marshes, this is not surprising.
AIRSAR classified water and trees reasonably well, but had

trouble separating both the high proximal marsh from the
high distal marsh, as well as, separating the spoil/barren flats

from the three marsh types. The similar moisture content and

vegetation geometry in the high proximal marsh and high

distal marshes are likely the cause of this result.



TheCAMSThermalsensorhadtrouble separating water

and high proximal marsh, separating low proximal marsh and

high distal marsh, and performed poorly for trees.

Multisensor Integration Results

A simple average and simple product of the single-sensor

classifier results were computed with equal weights for each

sensor, 95.2% and 94.9% overall classification rate

respectively. Both performed better than the best single-

sensor classifier, CAMS Optical, indicating the potential

increase in performance through combining classifiers for

different sensors, even with naive rules.

A weighted average and weighted product were then

computed, with the weights for each sensor based on

reliability factors obtained from the validation set's overall

classification accuracy for each sensor. These sensor weighted

results showed improvement over their equally weighted

counterparts, thereby giving credence to influencing the

sensor integration process based upon the reliability of a

given sensor. Weights based on the reliability of a sensor for

a given class were also chosen from the sensor validation

set's probability of correct classification for that class. There

was no significant improvement in results.

Another sensor integration technique involved using a

single RBF network with 100 basis functions trained on the

outputs of the single-sensor classifiers. These results were

comparable overall to both sensor weighted results.
The final multisensor classification results were obtained

from combining the single-sensor data prior to classification

and then using them as inputs to the class-specific expert
RBF classifiers. The results from this method were the best

overall at 96.0%. This is because no information was lost

from each of the sensors by classifying them separately.

By utilizing the multisensor data, noticeable improvements
were made in the classification accuracy for high proximal

marsh, high distal marsh, and trees. This is due to the added
information AIRSAR and CAMS Thermal data provide about

these classes when used in conjunction with CAMS Optical.

Table 1. Classification Accuracy for Test Sets

Probability of Correct Classification
Class

Classifier 1 2 3 4 5 6 Overall!

CAMSOptical 97.4 86.5 95.9 89.5 97.8 92.1 93.2

AIRSAR 94.0 72.7 68.9 72.3 53.9 82.0 74.1
CAMS Thermal 61.8 33.0 50.2 67.0 77.2 39.7 54.8

SensorWgt.Average98.9 92.1 94.8 93.6 97.8 97.4: 95.8

SensorWgt.Product98.9 93.6 94.8 93.3 97.0 97.8 95.8
RBFNetwork 96.6 93.6 94.8 91.8 98.5 99.3 95.8

JointClassifier 98.9 92.5 95.9 93.6 97.0 98.7 96.0

CONCLUSIONS

Remotely sensed data from multiple sensors were classified
both on a single-sensor and multisensor basis. Of the single-

sensor classifiers, the CAMS Optical performed the best for

each individual class and overall. When multisensor

integration was performed on single-sensor classifiers,
increases in classification rates were obtained for all

techniques when compared to the best single-sensor classifier,

CAMS Optical. This highlights the fact that additional

information can be gained by combining the results from the
classification of individual sensors.

Comparing the multisensor integration techniques, sensor

weighted sum and product rules performed better than their

equally weighted versions, demonstrating the need for

utilizing sensor reliability measures into the classification

scheme. Of these sensor integrated results, in addition to the

RBF network integrator, all produced comparable results.
The best overall classification rate was obtained from the

joint classification of the three sensors using an RBF network
based on a mixture of Gaussians distribution for each class.

While the percent increase was not sizable, it shows that

some information was lost in classifying each sensor

separately; that by combining the three sensors into a single
classifier input vector, the CAMS Thermal and AIRSAR

were able to provide useful information to the classification

of the CAMS Optical data set. However, in general,

flexibility is lost in classification of a combined data set in

terms of the potential use of statistical classification

techniques in conjunction with fusion of results via neural
networks.
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The Bureau of Economic Geology and the Center for Space Research at the

University of Texas at Austin are developing techniques and determining the capability of

airborne synthetic aperture radar (SAR) to map sedimentary environments and

geomorphic features on sandy barrier islands. Fully polarimetric multiband (C, L, and P)

SAR and C- and L-band topographic SAR data collected by the NASA/JPL airborne

system are being analyzed in conjunction with ground measurements and surveys. The

study area is along the southeast Texas coast and consists of washover fan/flood-tidal

delta complexes, marshes, tidal creeks, beach ridges, vegetated barrier fiats, foredunes,

and beaches. Responses in the radar data corresponding to variations in vegetation,

sediment type, and moisture content are visually apparent and allow the mapping of these

features.

L-band (24 cm wavelength) appears to best delineate beach ridge and swale

morphology and different wetland environments. L- and P-band (68 cm wavelength)

appear to indicate extensions of tidal creeks and faults cutting across the islands. L- and

P-band can also delineate former breaches caused by storms and dredging. C-band (5.7

cm wavelength) provides the greatest detail related to vegetation. Radar data also detected

subtidal features, wave refraction, and current patterns in a shallow tidal inlet systems.
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Abstract

Simulating Synthetic Aperture Radar Backscatter from Wetland

Environments

Kenneth Clinton Slatton, M. S. E.

The University of Texas at Austin, 1997

Supervisor: Byron D. Tapley

A numerical model is developed to simulate the Synthetic Aperture Radar (SAR)

scattering from a coastal wetland environment. The simulation is matched to measured

scattering data to investigate the utility of relating simulated and actual SAR data for

terrain analysis. The model is able to accurately simulate most wetland environments,

and it demonstrates that simulating SAR returns is an extremely useful technique for

understanding observed scattering behavior.

In the simulation, vegetation-covered terrain is represented as a discrete random-

media layer over a rough surface. A random-media model is adapted and integrated with

a random-surface model to calculate the SAR backscattering coefficients. The random-

media portion of the model uses the wave approach and the distorted Born approximation

to calculate scattering within the vegetation layer. The random-surface portion of the

model uses the Kirchhoff scalar approximation method to calculate the scattering from

the surface.



The model is applied to a study area on the coast of Texas, USA, which

encompasses coastal wetland environments on Galveston Island and Bolivar Peninsula.

The wetlands occur on the landward sides of these barrier complexes in characteristic

zonation patterns. Fully-polarimetric multi-frequency SAR data were acquired over the

study area in April 1995. Four prevalent environments, that are distinguishable in the

SAR data, are selected for investigation.

SAR data from the four identified environments are characterized as a function of

incidence angle, and the model inputs are specified so that the simulated data match the

observed data. The simulated backscattering coefficients and model input parameters are

used to determine what scattering mechanisms produce the observed SAR returns. The

scattering mechanisms are then attributed to surface and vegetation properties that were

observed in the study area.


